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ON THE PITCHING AND YAWING MOTION OF A SPINNING 

SYMMETRIC MISSILE GOVERNIZD BY AN ARBITRARY 

NONLINEAR RESTORING MOMENT 

INTRODUCTION 

Free-flight data of pitching and yawing motions of symmetric blunt-nosed 
missiles at hypersonic speeds have indicated a strong dependence of the frequency 
of oscillation on the maximum and minimum angles of the motion (e.g., refs. l-4). 
This dependence indicates the highly nonlinear nature of the pitching-moment 
characteristics of these missiles. A knowledge of the effects of the pitching- 
moment nonlinearities on the frequency of the motion is thus very important in 
the analysis of free-flight data and prediction of flight characteristics. 

The general motion of a pitching and yawing missile attendant with all of 
its nonlinearities is very complicated, and a variety of assumptions and restric- 
tions have been made by the authors who have analyzed these nonlinear effects. 
The most general analysis has been made by Murphy, who has examined nonlinear- 
ities associated with damped motions as well as stationary motions. In refer- 
ence 1, Murphy has considered the motion of a missile with a restoring moment 
described by a polynomial of odd powers of the angle of attack. The nonlinear- 
ities were assumed to be small, and Eryloff-Eogoliuboff techniques were applied 
to the equations of motion. In reference 2, Murphy applied a perturbation tech- 
nique for a polynomial moment of the first and third powers of the angle of 
attack and removed the restriction of quasi-linear motion. In reference 3, 
Rasmussen obtained exact solutions for a first and third power cubic moment for 
zero damping. Kirk, in reference 4, developed exact solutions for a one-term 
moment of arbitrary power of angle of attack, a cubic moment with first, second, 
and third powers of angle of attack, and a quintic moment of first, third, and 
fifth powers of angle of attack. Kirk, however, considered only planar motion 
with zero damping. 

The pitching-moment characteristics of symmetric missiles are deduced by 
fitting the free-flight data with specific solutions to the equations of motion. 
Rather than the data itself suggesting the form of the pitching moment, the data 
reduction is dependent upon the particular assumptions adopted for the analysis 
of the equations of motion. An important step, therefore, toward a more general 
reduction of free-flight data would be an analysis of the pitching and yawing 
motion due to an arbitrary restoring moment. 

The object of this report is to present an analysis of the conservative 
pitching and yawing motion of a spinning symmetric missile acted upon by an arbi- 
trary restoring moment. The restoring moment will be represented by an arbitrary 
power series of the resultant angle of attack. In addition to the nonlinear 
terms included in the restoring moment, the nonlinear inertial terms due to spin 
will also be included in the analysis. 
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u resultant angle of attack, tan-l tan2 CL + tan2 j3 
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air density 
. 

Euler angles 

maximum resultant angle of attack 

minimum resultant angle of attack 

frequency, radians per unit time 

spinning velocity about roll axis 

ANALYSIS 

Equations of Motion 

The general equations of motion for a spinning symmetric missile may be 
derived from different points of view. In reference 1, the equations of motion 
were derived for small angles of attack but included nonlinearities in the 
pitching moment. In this analysis, it is desired to consider the effects of 
large angles of attack. These effects come from the nonlinearities in the 
pitching moment and also from the inertial effects due to spin. Since the 
missile under consideration is symmetric, Lagrangian methods are appropriate for 
the derivation of the equations of motion. The coordinates of the motion will be 
described by Euler angles, and the derivation will be similar to the classical 
derivation of the equations of motion for a heavy top, such as given in 
reference 5. 

Let us consider the motion of a spinning symmetric missile with its center 
of gravity traveling in the x direction with a constant velocity v. We will 
assume that the effects on the frequency of the motion of the resultant forces 
acting on the missile are negligible, and thus that only a pure moment about the 
center of gravity need be considered. Furthermore, let us assume that the moment 
can be derived from a potential. Thus, the motion is conservative. Finally, we 
will assume that the moment depends only upon the resultant angle of attack 6. 
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The body-fixed coordinate system will be denoted by x', y', z', with the 
origin at the center of gravity. Ihis system is related to the inertial coor- 
dinate system (x, y, z) by the Euler angles 8, CT, and $ (sketch (a)). 

X 
Rotation around : 

X, 8, precession 
N, u, nutation 

Line of nodes 

Sketch (a) 

The kinetic energy of motion is given in reference 5 in terms of the Euler 
angles by the expression 

T= 11 ;2+62sbi? a) 
2( 

where for a symmetric missile the moments 
and Ix, = Is. 

If we denote the potential energy by 

L=T- 

+ $ (\G. + e cos cr)2 (1) 

of inertia are given by Iyl = I,, = Ii 

V(a), then the Lagrangian is given by 

VW (2) 



Accordingly, the equations of motion are 

(3) 

Here the generalized coordinates qi are the Euler angles 8, CT, and $. 

From equations (1) and (2), we can see that the Lagrangian is not a function 
of 0or*. These coordinates are thus cyclic, and two first integrals of the 
motion can be written: 

Angular momentum about x' axis = constant: 

a = I,($ + e cos (5) = I3w 
a$ 

X 1 = IiP (4) 

Angular momentum about x axis = constant: 

$ = ( I1 sin2 U + 13 cos2 U)i, + 134 cos U = Ilb (5) 

where P and b are two constants of the motion. The constant P= (13/11)wxf 
represents the spinning rate of the missile. 

There is also another first integral of the motion; since the motion is 
conservative, the total energy E = T + V(a) is a constant. 

E= 2 (62 + 42 sin.2 0) + 2 Wx'2 + v(u) 

Since Wxf is a constant, the above expression can be written 

11 E, = - (22 + e2 sin2 u) + v(u) (6) 
2 

where E, = E - (l/2)13tixf2. 

The third equation of motion may be determined from Lagrange's equation (3) 
for qi=O* This equation becomes 

dV Ii;i - Ii62 sin cr cos u + I,($ + i, cos 0)4 sin (5 + - = 0 
da 

Using equation (4), we can reduce the above equation to 
. . u - i2 sin u cos u + Pi, sin (5 + - - = 0 1 dV 

I1 do (7) 



From equation (7), we can identify dV/du with the restoring moment acting upon 
the missile: 

1 dV --= qA2 
I1 au 

-M(u) = 
-11% 

(8) 

For an arbitrary moment we can write1 

M(u) = - 
c 

Mnon+' (9) 
n=o 

where c represents an arbitrary summation of the terms Mngf'. integrating 
equation (9), we obtain the expression for the potential V(U) 

+v(u) = 
c 

Mn an+2 (10) 
1 n+2 

n=o 

The moment, and thus the potential, may be chosen arbitrarily by an arbitrary 
selection of the parameters Mn. 

Fe value of 6 may be determined from equations (4) and (5) by eliminat- 
ing $ 

i= b - P cos u 
2 

sin u 

Equation (11) may be substituted into equation (6) to obtain the differential 
equation for the-resultant angle of attack U 

52 + (b - P cos u)~ + 
sin2 u 

p v(u) -E’ = 0 
1 

(11) 

(12) 

where E' = (2/11)Eo. Multiplying equation (12) by u2, we cm rewrite it in the 
following form 

1 au2 2 
Tat =- 0 

u2 
sin2 u 

(b - P cos u)~ - E V(u)u2 + Era2 (13) 

Equation (13) represents the basic equation of this report. From this equation, 
an expression for the frequency of oscillating motion can be obtained. Equa- 
tion (13) may be expressed in a more convenient form for our purposes by writing 
the first term on the right-hand side in terms of a power series 

lit should be kept in mind that for the symmetric missile under considera- 
tion, the desired moment is an odd function of angle of attack. This poses no 
problems in the analysis that follows (u as defined is always 2 0), but limits 
applications to this class of bodies. 
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co 
O2 (b - P cos u)~ = 

sin2 u c 
anon (14) 

n=o 

where 81 = a3 = a5 = aoad = 0. The values of an for the first several terms 
are written below: 

a0 = b - P)2 

a2 = b2 + P2 + bP _ p2 
3 3 

a4 = b2 + p2 + 1 bp 
15 60 

a6 = 2b2 + P2> + 31 bP 
189 1512 

a8 = b2 +Pe 
675 

+ = bp 
43200 

Equation (13) may now be written as 

$ ($2= - 2’ +$l - 2 1 fj!& an* + u2E1 (15) 
n=o n=o 

By changing the summing notation slightly, we can write the above expression as 

= -a0 + (ET - a2)u2 - 2 
n=o 

where 

(16) 

The right side of equation (16) is expressed as an infinite series, which 
may be evaluated approximately to any order. This form for equation (16) shows 
the relation between the nonlinear terms due to the restoring moment and those 
due to spin. The nonlinear terms due to spin show their effects through the 
parameters b and P in the coefficients an. 
effects become important, 

For large spinning rates P, these 
and they vanish for planar motion. 

also become important at large angles of attack. 
These effects may 
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Equations (13) and (16) are expressed in terms of the three constants of 
the motion b, P, and E' . While these constants represent the conservation of 
angular momentum and energy, they do not directly express physical observables 
of the motion. Two of these constants, however, can be replaced by two other 
constants which are physically observable. These two constants are the maximum 
and minimum resultant angles of attack, 6, and bo, respectively; they occur when 
the derivative da/at vanishes. Consequently, applying the conditions d = am 
ma u = Q, at da/at = 0 to equation (13), we find E' and b to be given in 
terms Of am, Uo, and P by the following expressions: 

E, = (b - P cos Um)2 + 2 
sin2 Um c 

Mn umn+2 
n+2 (174 

n=O 

b= P 2 urn cos u. - sin2 
sin2 am - sin2 u. 

u. cos 6, 

f. Sin 6, Sill U. 
[ 

(COS Um - Cos uO> 
2 

f ;! (sin2 am - sin2 Go) 
P2 

1 & (umn+2 - uOn+)l='2} (U-b) 
n=o 

Applying these conditions to equation (16), we get for a0 and (E' - a2> 

a0 = (b - P)2 = r & [zz r 11: (umn* - uon*) - (umn" + uon*)] (18a) 

n=o 

(E' - a2)= 2 2 2 2' 2& (umn" - uon+4) 
Orn -‘O n=o 

(18b) 

Equations (17a) and (1%) are explicit relations for E' and b, and equations 
(18a) and (18b) are implicit relations. Substituting equations (18a) and (18b) 
into equation (16) and rearranging the terms, we can find the following 
symmetric form: 

i (C&Z)’ = (u2 _ ‘In2 d ‘02 ) f & ‘m:J ] 1::’ 

n=o 

+ r nFn2 ('mnN ~'on*- *+G) 

n=o 
(19) 
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The right-hand side of equation (19) is an infinite series in terms of 
powers of the resultant angle of attack U. Each term of the series involves 
the difference between a power of the resultant angle and the average of the same 
powers of the maximum and minimum resultant angles. 

If we make the transformation a2 = E, then equation (19) can be written 

1 dc 2=(E-+) 0 Bat c co ig umn4 - clan* + O3 jGg - 
n=o 

n+2 am2-ao2 
c ( 

umn* + uon” _ En+ 
n t-2 2 

n=o ) 

- Go(~) (20) 

where F = ( urn2 + 0,2)/2. One quarter of the period of oscillation may be found 
by integrating equation (20) from co to cm, and thus the frequency w may be 

given by the following quadrature: 

CL= 1 
s 

4x 
tm - to 

2!w -IiT- Eo & 

Various possible motions are shown in sketch (b). 

Planar mot ion Typical motion Near-circular motion 

Sketch (b) 

The integral in equation (21) may be evaluated in closed form for certain 
cases by terminating the series given by G,(E) in equation (20) after a certain 
number of terms. The simplest case occurs when only the first term, correspond- 
ing to n =O, is retained and the remaining terms neglected. This case corre- 
sponds to a linear restoring moment, M = -Moo; neglecting the higher order 
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spinning terms, the frequency is found to be independent of urn and a,. The 
particular moment described by the cubic M = -Mea - M2u3, where only terms 
given by n = 0 and n = 2 in the ser&es were retained, was treated in reference 3. 
However, the spinning term as in M, was not taken into account. For this 
cubic moment the frequency may be evaluated in terms of a complete elliptic 
integral of the first kind. In principle, the frequency for the case where only 
the terms corresponding to n = 0, n = 2, and n = 4 are retained could also be 
evaluated in terms of elliptic integrals, but the solution would be very compli- 
cated. For an arbitrary restoring moment, an approximate method of evaluation 
must be developed. 

An Approximate Expression for the Frequency 

Since Um SAld (50 are roots of the equation Go(cr2) = 0, we may rewrite 
equation (20) in the following form 

GO(c) = (G - E)(E - co,)Gh) (22) 

where G=(E) is a well-behaved positive function in the interval e. 2 E 2 em. 

Equation (21) for the frequency may now be written 

de 

4(E: - s,)Gd E) 
(23) 

Let us make a transformation 
z = (em + eo)/2. Expression 

to the new variable Cp = E - F, where 
(23) b ecomes 

dcp cp2)Gd~ + cP> (24) 

where 61 = (Em - eo)/2* 

The function Go is essentially the function GO(e) with the two adjacent 
roots %I and Eo factored out. Consequently, Gl(6) will not vanish in the 
interval e. 2 E 2 em unless there are other roots equal to either EO or em. 
Excluding this case, Gl(s) will be nonvanishing over the interval e. 2 E < Em, 
and we can expand the square root of the inverse of G=(e) in a Taylor series 
about e = z. Thus we have 

&ym = 1 -I- B1(P f B2(p2 -I- . . . (25) 
JG,(T + 'p> 
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where Bl, B2, B3 . . . are the respective coefficients of the Taylor expansion 

of [Gl( E) ] -1'2 multiplied by m. The above series is convergent in the 
interval -61 5 cp <, 61~ or 'O<E<%' The first two terms are given by 

B1 = - [& $1 & 

B2 = 1 
[() 

2 dG1 2 _ G d2Gx 1 [2G1(F)12 2 = 1 - da2 e=z 

Expression (24) can now be written as 

'1 (1 + B1q + B2CP2 + . ..) 
W' 

(26a) 

(26b) 

(27) 

and the integral can be integrated term by term. The odd functions of Cp will 
all vanish, and the result of the integration is 

1*3...(n - 1) ElnG + . . . 
3-c 

B2 +$ E14B4 + . . . + 
2*4...(n) 1 -= 

W 
mm- 

(28) 

Inverting relation (28) and squaring, we can write the formula for the frequency 
as 

(3 = 2G1( -3 
l+55B2+ 3 1*3...(n - 1) 2 (29) 

8 e14B4 

+ . . . + elnBn + 

2 

. . . 

2*4...(n) 

1 
Formula (29) is an exact expression for the frequency of oscillation for an 

arbitrary restoring moment. The convergence of the series in formula (29) can be 
demonstrated by making use of Taylor's formula with integral remainder, together 
with the information that the Taylor series given by (25) converges. A detailed 
proof is not given here. In principle, the value of the frequency could be deter- 
mined to any degree of accuracy by taking enough terms of the series in the denom- 
inator of formula (29). This is generally difficult since the Taylor expansion 
coefficients B2, B4, . . . are complicated functions. The infinite series in 
formula (29), however, converges very rapidly even for the worst cases, and a 
remarkable approximation can be obtained by retaining only the first term of the 
series. The first-order approximation is thus given by 

+ uon* 
2 

w2 = 2Gl(3 = (30) 
(urn2 - ao2>2 
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Formula (30) is exact in the limit of circular motion. This can be seen 
from expression (29) by setting 61 = (em - eo)/2 = 0. It is also a good approx- 
imation even for planar motion. This can be deduced by examining the higher 
order approximations, which are discussed in the appendix. In addition, the 
frequency expression (30) can be compared with the KYyloff-Eogoliuboff technique, 
and this will be discussed in the next section. 

The frequency expression (30) could have been obtained from a simpler point 
of view. Consider the curve of Go(e) as a function of 6 in the interval 
co 2 E 2 G shown in sketch (c). In order to evaluate approximately the inte- 
gral given in equation (21), we could replace Go(e) by an equivalent parabola 
in the interval e. < E < em, matching the parabola with the curve 
three points eo, (eo-+ ei)/2, em. 

GO(E) at the 
The resulting parabola would be given by 

(% - E)(E - ~~)Gdz,) 
Substituting the parabola for G,(s) into equation (21) and integrating, we would 
obtain expression (30) for the frequency. The first derivation of formula (30), 
however, shows that it is the first approximation of a series expansion. 

Sketch (c) 

The frequency expression (30) contains the effects of nonlinear terms due 
both to the restoring moment nonlinearities, Mn, and to the nonlinearities due to 
spin. The nonlinearities due to spin are contained in the parameters an, speci- 
fically by the con_stants b and P. Both types of nonlinearities are represented 
by the parmeter Mn given by 

fqn=M,-cn+ 
%+4 
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The term an may be determined in terms of the one spinning parameter P by 
using equation (l'ib) to evaluate b. An approximate formula for b in terms of 
P, however, may be obtained from equation (18a) for a0 = (b - P)2, which is 
rewritten here. 

a0 = (b - P)2 = z & [:I + cco; (umn" - con*)-(cmn* + con*)] (31) 
m -0 n=o 

For the case of zero minimum angle of attack, we have co = 0 and, consequently, 
“0 =O,or b=P. At the limit of circular motion, however, u. = a,, and 
using equation (31), we get for b 

Thus, we can deduce, in general, that if 

(33a) 

we can make the general approximation 
only. 

b = P and evaluate an in terms of P 
For this case, the first few values of Mn become 

r& = M, + pq 

2 

E2 = M2 + 5 

i?3 = M3 

ii4 = M4 + s P2 

(33b) 

(33d) 

(33e) 

(330 

terms 
The sp&.nins of the missile affects the frequency only_through_the even 

MO, Qy M4, etc. These contributions to the terms Ma and M4 were not 
taken into account in references 1, 2, and 3. 
generally be small. 

These effects, however, will 
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Discussion of the Approximate Formula 
for the Frequency 

The formulas given by (30) and (33) illustrate the influence of maximum and 
minimum smplitudes, the spinning rate, and the arbitrary restoring moment upon 
the frequency of the motion. The validity of equation (30) can be deduced by 
comparison with known exact results for certain limits of motion. In the limit 
of circular motion, of course, formula (30) is exact. This may be verified for 
the particular cubic moment M = -Moo - M2c3, which was analyzed in reference 3 
in terms of elliptic integrals. 

Formula (30) may also be compared with the approximate results of reference 1 
in which the Kryloff-Pogoliuboff method was used. In order to compare these 
results with the present 
as 

w2 zz 

method, we can write the first few terms of equation (30) 

5 
'rn 

(Urn2 - Uo2j2 

u m 7 -I- uo7 
( 

urn2 + uo2 
j 

712 

+ 3z2’g- + uo2) +$K3 
2 \ 2 / 

(a,’ - uo2)” 

+ & M4(7um4 + 1oum2u02 -I- 7u04) 

urn9 + uo9 

++i& 2 

_ p2 ; uo2)312 

(urn2 - uo'>' 

+-$&(3u," + 5um4u02 + 5um2u04 + 3u06) + * . . (34) 

If the results of reference 1 are reduced to our nomenclature (for P = 0), we 
can obtain a similar expression for only the even terms: 
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W2 = Mo + ; M2(cm2 + ao2) + +(5um4 + 6am2a02 + 50,~) 

+ $ M,(7qn6 + gum4u,2 + gum 2u04 + 7u,y + . . . 

Comparing the results of formula (35) to formula (34), we can see that the 
terms corresponding to M. and M2 are equal. The remaining even terms are 
different, but in the limit of circular motion ( UO = Um), they reduce to the 
same value. The main differences will lie in the limit of vanishing minimum 
resultant angle, u. = 0 (e.g., planar motion). Hence, let us examine the fre- 
quency formula (30) in this limit in more detail. 
(30) assumes the simple form 

Ln the limit u. = 0, formula 

cd2 = 4 r 3-[l - (;)T] umn (36) 
n=o 

Several exact results can be obtained for planar motion. An analysis of 
planar motion is found in reference 4, and these results can be compared with 
equation (36). In addition, an approximate expression for the frequency can be 
easily obtained for planar motion from reference 6. This KYyloff-Eogoliuboff 
technique is used in reference 1. 

A very simple comparison can be made with a one-term moment of arbitrary 
power of angle of attack 

The exact value for the frequency is given by reference 4, and is 

wn2 i!rP-n? =&( n+2 

+A+$) 2 (n +4)2 I 1 r 

( > 

n+3 
n+-2 

where I'(x) is the gamma function of argument x. The first-order Kryloff- 
Bogoliuboff approximation is given by (ref. 6) 

wn 2 2 lr -=- 
s Mnor?nn ' 0 

~in(~+~)(p dCp 

= 2 1.3.5...(n + 1) 
n even 2-4.6.. .(n , + 2) 

(37) 

= k 2.4*6...(n + 1) , n odd 
fl 3*5*7...(n i- 2) 

(38) 
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Using equation (36), we obtain for the present method 

&[l - ($)F] 412 

%P-nln 
(39) 

Although equations (37), (38), and (39) are quite different in form, their values 
are very close to each other. The values of these functions for n < 10 are 
compared in the following table and figure 1. 

2 

!z?P 
Exact n Present approx. 

(es- 37) (es. 39) 

0 1.0000 1.0000 
1 .8366 
2 .7178 

.62-n 
- 5578 
.5016 
.4556 
.4173 
.3849 
-3571 
-3331 

.861g 
I -7500 

.6586 
-5833 
-5209 
.4687 
.4248 
-3875 
.3556 
.3281 

Kryloff- 
Bogoliuboff 

(es- 38) 

1.0000 
.8488 
- 7500 
.6-w 
.6250 
.5821 
.9@ 
.5174 
.4g22 
.4703 
.4512 

From this table and figure 1 we see that the values from the approximate 
formula (39) agree well with the exact values given by equation (37). In addi- 
tion, the present approximation is superior to the often-used Xi-yloff- 
Bogoliuboff approximation for all values of n greater than 2. For n = 2, the 
fiyloff-Bogoliuboff and the present approximation give the same result. The 
Kryloff-Bogoliuboff approximation is superior only for n = 1, where it differs 
from the exact result by 1.5 percent, whereas the present approximation differs 
by 3.0 percent. 

In the limit of planar motion, another comparison that can be made is for 
a linear-cubic-quintic restoring moment 

M= -Mea-M2a3 -M,c? 

16 



For brevity, we will restrict the comparison to the case where the linear and 
quintic terms are stabilizing and the cubic term is destabilizing. The exact 
period of oscillation (To = 2x/~) will be compared with results from the present 
method and with similar results from the Rryloff-Bogoliuboff technique. The 
appropriate equations are 

Present method: 

Kryloff-Bogoliuboff (ref. 6): 

& To = 
2fl 

+--a$ + 5”4am* 3 M2 

4 MO 8% 

Exact (ref. 4): 

where 

Pgam4 

u = 12gg2 [K(k)12 
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k2 = &- ii 
2 4 

4+3"es2+2 

K(k) = complete elliptic integral of the first kind 

The comparisons are shown in the carpet plots in figure 2, where the dots 
represent the exact solution, and the solid lines, a given approximation. The 
Kryloff-Bogoliuboff approximation (fig. 2(a)) is seen to give a fairly good 
representation of the exact solution. Comparison of figure 2(b) with 2(a), how- 
ever, shows the present method to be clearly superior. The accuracy obtained 
with the present method is much better than would have been casually anticipated. 
It is shown in the appendix that the present method is least accurate for the 
case of planar motion, so the favorable comparisons for the planar cases that 
have been shown justify a high confidence in the method in general. 

Application to Free-Flight Data 

Consider the determination of the restoring moment that governs a model in 
free flight when the frequency and amplitude have been measured for a large num- 
ber of flights. Equation (30) provides a relation between the frequency and 
maximum and minimum amplitudes for an infinite number of possible moment combina- 
tions. We must attempt to find a moment that best represents the measured fre- 
quency of the motion over a given range of flight data. 

Since there is an infinite number of combinations, this at first appears to 
be a hopeless task. Fortunately, however, a number of different assumed forms 
for the moment, when fit to the experimental data, give nearly identical results. 
Hence it is not necessary to find a unique moment that gives the best fit but 
only a member of a class of moments that gives a good fit. 

These statements are justified as follows. An examination was made of the 
experimental data in reference 7, which showed large nonlinearities, and it was 
decided that a four-term moment in the resultant angle of attack would be neces- 
sary to adequately represent -t&e data. Due to the absence of any low-amplitude 
data, the linear coefficient (Mo) was assumed known, equal to the value given in 
reference 7. Then a&l pgssib_le f_ourserm_ moments, each containing Mo, and three 
members of the set (Ml, Ma, Ms, b, Ms, Me) were fit to the experimental data 
using equation (34) and the method of least squares. The results are summarized 
as follows. 
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Powers of resultant 
angle of attack 

in assumed moment 
Sum of the squares 
of the residuals 

1-2-3-4 
1-2-3-5 
1-2-3-6 
l-2-3-7 
l-2-4-5 
l-2-4-6 
l-2-4-7 
1-2-5-6 
l-2-5-7 
1-2-6-7 
l-3-4-5 
l-3-4-6 
l-3-4-7 
1-3-5-6 
1-3-5-7 
1-3-6-7 
l-4-5-6 
l-4-5-7 
l-4-6-7 
1-5-6-7 

3.5x10-7 
4.9 

86:; 

86.46 
10:4 
10.2 
11.6 
12.4 

2.4 
2.0 
l-9 
1.8 

;:i 
. 

11.3 
17.3 
32.0~10-~ 

It is easy to see that most of the moments need not be considered because 
of the large error sum relative to the better fits. The important question is 
how to choose between these better fits that have about the same error. Figure 3 
shows the envelope from the five moments that gave the smallest sum of the 
squares of the residuals. The moment curves are close enough together that no 
real choice between them need be made. Figure 3 also shows a substantial differ- 
ence above 16O between these moments and the moment from reference 7. The 
greater number of nonlinearities that can be treated with the present method 
allows a more precise determination of the restoring moment than the linear plus 
cubic segmented approximation used in reference 7. 

CONCLUSIONS 

An analysis has been presented of the pitching and yawing motion of a 
spinning symmetric missile acted upon by a restoring moment represented by an 
arbitrary power series of the resultant angle of attack. The following conclu- 
sions were obtained: 

1. The approximate solution obtained for the frequency of oscillation is 
least accurate for the case of planar motion, becomes increasingly more accurate 
as the motion becomes more and more circular, and is exact in the limit of 
circular motion. 



2. For the case of planar motion, the approximate solution gives results 
that are 'extremely close to results of exact solutions. 

3. The approximate solution gives results that are, for the most part, 
more accurate than results given by the Kryloff-Bogoliuboff technique. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., Nov. 27, 1963 
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APPENDIX 

EFFECT OF TBE HIGHER ORDER TERMS ON THE 

VALUE OF THEFREQUENCYFORMULA 

Formula (29) for the frequency of oscillation is rewritten here 

02 2Gd=) = 
l+* 

B2 
3 

+-e1*B4 8 

+ 5 

16 eieBe 
+ . . . 

2 

1 2 (Al) 

The approximate formula (30) 

W2 = 2G1(+) (A21 

can be considered the first-order term in a system of higher order approximations. 
The second-order approximation would be 

and so on for the higher approximations. 

We can consider the 
term B2 in more detail. 

effect of the second approximation by considering the 

B2 

The function G=(F) and its derivatives in the expression for Ba are 

G=(F) = 

w2 = 2Gd ‘3 
2 (A3) El 1 2 

1+- 
2 

B2 

d2G1 
lG- 1 E=F 

[2G,(F)12 

(A5a) 



n 

~G=(E) - -5 
&(n + 4)E 

n=o 

(urn2 - uo2>2 

(A5b) 

(A5c) 

The factor (urn2 - uo2)2 app ears in the denominator of each of the terms 
(&a, b, c), but in the combination of these terms given by the expression for 
B2, this factor cancels, thus B2 will have a finite value as a0 + urn. The 
factor ~1 vanishes as u. + Um, however, and thus (A3) reduces to (A2) in the 
limit of circular motion. 

We can get the best physical significance for B2 by considering the case 
of a one-term moment given by 

M = -%?+I (Jw 

Letting 7 = Uo/Umj we can then express G=(F) and its derivatives as 

4ypmn 1 + ynS4 

G1(F) = 
n+2 2 

_ (l ; 72)%y 

(I - 72)2 

4qpmn-2 
n+2 

n+2 

(1 - 72)2 

8 4 G1(T) - %umn-* 
um 

[(n + 4) (' d ")"I 

(1 - 72)2 

(A7a) 

(AD) 

(A7c) 
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Now consider the case of planar motion (7 = 0). We then get a fairly simple 
expression for Bs by substituting equations (A7) into (A4). 

B2 = 1 
(1 + 2?) + 12n + 16(1 - zn) 

8um4 
4(2P - b(2)’ + 1 1 (Aa 

The investigation of equation (A8) leads to several interesting results. 
The quantity Ba as a function of n is shown in sketch (a), and Ba is largest 
in absolute value when n + oo, this value being B2 = -l/2um4. 

win4 

.25- 

Sketch (d) 

Since for planar motion cl2 = um4/4, we are left with 

lim 
n+o0 

yB2=- 1 
Fis 

The greatest contribution that (e12/2)Ba can make in equation (A3) is thus about 
- 1/16. This most extreme case is a relatively small contribution. 

We now return to the cases of nonplanar motion (7 f 0). Again equations(A7) 
are substituted into (A4), but the resulting expression for Ba is too cumber- 
some to write out. What is found, however, is that in all cases (except 7 = l), 
Bs is largest in absolute value when n + DJ, and in allxses 

2 

1ilIl Cl 

n+aJ 

TB2=-& (7 # 1) 

Hence, the extreme contribution of the term involving B2 does not depend on the 
type of motion. 
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We csn now summarize results that were obtained for higher order terms. It 
was found that regardless of how many of the Bn terms were retained, the worst 
case was when n 303. 

3 lb -c14B4 = -15 
n+o0 8 1024 

105 lim 2-Ci6Be= -- 
n-tco16 16384 

Define 
El 2 

Ul =1+- 2 B2 

2 

U2 =l+61B2+ - 3 
2 8 

ei4B4 

U3 =1+- El 2 +$ B2 ei*B, + 5 - 2 16 si6B, 

Then 

lim u1 = 0.9375 
n+o0 

lim ua = 0.9229 
n+a 

lim u3 = 0.9164 
n+w 

. 
lim Un = 0.9003 

n+o0 

So far we have considered the extreme contributions of the terms in equa- 
tion (Al) involving the E!n. Next, we must consider the realistic contributions, 
where we restrict the exponent in equation (A6) to a reasonable value, like 
n 520. When this is done, we find that the value of 7 = uO/um significantly 
influences the size of the En contribution, and, moreover, that the contribu- 
tions are much smaller than in the extreme case. Sketch (e) shows results for 
several values of 7. The first and third corrections, ui and us, are shown as 
functions of n, up being omitted for clarity. 



U 

.96 - y = 0.4 

.92 - 

1.04 - y = 0.8 

1.00 - 

.96 - I 
0 5 

u, and u3 

-n 

I I 
I5 20 

Sketch (e) 

If the u's in the sketch were identically unity, this would mean that the 
approximate formula (A2) was exact. It is noted that the deviation from unity 
is very small. It is also noted that the deviation from unity for the three- 
term correction, ~3, is generally smaller than that for the single term correc- 
tion, ui. The first correction alone overestimates the correction to the 
approximate formula (AZ). Finally, it can be seen from this sketch that the 
approximate formula is poorest for planar motion and becomes increasingly better 
as uo/"m increases toward 1. Although these results are for a single-term 
moment, they would be expected to be qualitatively true for more complex moments. 
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Figure l.- Comparison of approximate solutions with exact solution; M = -Mnan+'. 
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(a) K-B approximation versus exact solution. 

Figure 2.- Carpet plot showing comparison of approximate soiutions with exact 
solution; M = -&a - M2a3 - M4a5, G > 0, Mz < 0, M, > 0. 
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Figure 2.- Concluded. 
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Figure 3.- Restoring moment coefficient corresponding to various assumed moment 
representations. 
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